上周,全球物理学界迎来爆炸性消息:韩国一个科学家团队表示,他们发现了全球首个室温超导材料,一种名为 " 改性铅磷灰石晶体结构(下称 LK-99,一种掺杂铜的铅磷灰石)" 的材料。
值得注意的是,该研究团队成员先后在预印本系统 arXiv 上提交了两篇论文,时间相差不足 3 小时,但均未经同行评议。最新研究一发布,旋即在引起全球物理学界轰动。
(资料图片仅供参考)
但在研究引发全网沸腾的同时,大量业内人士也对其相关论文提出了质疑。有业内人士指出两篇论文中有明显的不一致之处。
北京时间 7 月 31 日(周一)凌晨,该团队第二篇论文《超导体 Pb10-xCux ( PO4 ) 6O 在室温常压下表现出悬浮现象及其机理》的第三作者、美国威廉玛丽学院物理系教授 Hyun-Tak Kim 在回复《每日经济新闻》记者的置评请求时表示,他的团队此前发现了论文中的一个错误,如今已经被修改,本周二,经修改后的论文就将重新在 arXiv 上发布。此外,其团队制造的 LK-99 室温超导材料或许可以在一个月之内被复制,其成员也会对 LK-99 的制作方法进行指导,在文章中公开 LK-99 的制作方法,也正是为了接受各方的质疑。
Hyun-Tak Kim 教授(图片来源:威廉玛丽学院物理系官网)1 个月内或可复制室温超导 LK-99
记者查阅预印本系统 arXiv 发现,韩国科学家团队的这项新研究在该平台关联到两篇论文,第一篇《第一个室温常压超导体》(arXiv:2307.12008)提交于 7 月 22 日 7 时 51 分,第二篇《超导体 Pb10-xCux ( PO4 ) 6O 在室温常压下表现出悬浮现象及其机理》(arXiv:2307.12037)则于 7 月 22 日 10 时 11 分提交,提交时间相差不足 3 小时,尚未经同行评议。
该团队在 arVix 的第一篇论文《第一个室温常压超导体》中专门上传了一段视频,以证明 LK-99 在磁铁上悬浮的情况,这也就是迈斯纳效应,该效应是证明材料超导的重要现象。不过,根据视频内容显示,LK-99 样品的悬浮情况并不完美,仍有一边似乎接触磁铁。就该情况,Hyun-Tak Kim 称,这表示样品并不完美,只有一部分成为超导体并表现出迈斯纳效应。
就为何会出现样品 " 不完美 " 的情况,Hyun-Tak Kim 在回复《每日经济新闻》记者时表示," 我们已经展示了部分样品出现迈斯纳效应的视频,这就是我们发现 LK-99 室温超导性的证据。但从现在起,我们必须制造出能够 100% 触发迈斯纳效应的样品。"
此外,一些业内人士发现该团队发表在 arVix 上的两篇论文存在重大的不一致之处,另外一些人则认为这两篇论文存在根本的缺陷,例如仅仅因为实验室样品出现 " 抗磁 " 未必就能证明迈斯纳效应,且触发迈斯纳效应或并不是因为 LK-99 样品的室温超导性。
对此,Hyun-Tak Kim 对《每日经济新闻》表示," 这个质疑很好。实际上,我们之前就在第二篇论文中发现了一处错误:在将两个数据合并到一起时,其中的一个乘数无意中被遗漏了。因此这篇论文中有一个数据是错误的。如今我们已经将修改后的版本上传到 arVix,本周二,经修改后的论文就将与大家见面。"
目前,全世界很多研究小组已经在快马加鞭对此研究进行复现。按照 7 月 27 日中科院物理所发的文章," 最快三天就能制备出一批样品。大概下周,初步的验证结果就可以公布。"
(图片来源:中科院物理所微信公众号)但 Hyun-Tak Kim 对《每日经济新闻》记者指出,LK-99 的制造时间并不是 " 三天 " 那么短。
他指出,他的团队所提出的室温超导体 LK-99 也许在一个月内可以被任何人复制,他公开了 LK-99 的制作方法,如果任何人在复制 LK-99 方面遇到任何问题,他的团队成员也会对制作方法进行指导。
" 如果研究人员对我们的成果有疑问,他们就会质疑我们的研究成果。因此,我选择了公开 LK-99 的制作技术。如果其他研究小组参与 LK-99 样品的制作,他们也将参与这场竞争。不过,我希望鼓励他们取得成功。我们愿意为人类的进步做出贡献。"Hyun-Tak Kim 在邮件中对记者指出。
其中一篇论文已提交期刊审议
与今年 3 月份美国罗彻斯特大学研究团队将其室温超导材料的论文直接发布在业内顶刊《自然》上不同(即经过同行评审),该韩国科学家团队的论文目前仅仅上传到了预印本服务器 arXiv 上,还不清楚该论文是否已提交给期刊进行同行评议。
由于已有同题的研究被 " 推翻 " 的先例,该韩国科学家团队的研究成果也必然将受到严格审查。
对此,Hyun-Tak Kim 对《每日经济新闻》记者解释称,"在我们将《超导体 Pb10-xCux ( PO4 ) 6O 在室温常压下表现出悬浮现象及其机理》这篇论文上传到预印本 arXiv 之前,就已经将这其手稿提交给了一家期刊,但并不是《自然》(Nature)或《科学》(Science)。《第一个室温常压超导体》没有提交是因为无法获得作者的许可,这也不是我署名的论文。"
《第一个室温常压超导体》(图片来源:arXiv)《超导体 Pb10-xCux ( PO4 ) 6O 在室温常压下表现出悬浮现象及其机理》(图片来源:arXiv)延伸阅读:
为何室温超导总是受广泛关注?
其实,如今距离人类首次发现超导现象已经有 100 多年了。早在 1911 年,荷兰物理学家 Heike Kamerlingh Onnes 就已经发现,当温度降低至 4.2K(约 -268.95 ℃)时,浸泡在液氨里的金属汞的电阻会消失。
《每日经济新闻》记者还注意到,在韩国此次的研究公布之前,也有其他研究人员声称开发出了室温超导的材料。
早在 2020 年,美国内华达大学的研究人员就称其开发出了一种室温超导材料,并成立了一家名为 Unearthly Materials 来进一步开发。
今年 3 月份,来自美国罗切斯特大学的物理学家 Ranga Dias 声称自己在 21 ℃条件下实现了室温超导 —— 由氢(99%)、氮(1%)和纯镥制成的材料 LNH 在 21 ° C、1GPa 条件下就实现了超导状态。
不过,Dias 团队的研究发表后遭到多方质疑。加州大学圣地亚哥分校理论物理学家乔治 · 赫希(Jorge E.Hirsch)教授曾对每经记者指出,Dias 本人并没有在拉斯维加斯的美国物理学会会议上对他们团队的研究进行复现。而在 Dias 的研究公布后,南京大学闻海虎团队曾火速安排重复实验,但团队发现,Dias 给的制备样品方案几乎不可行,于是他们结合自己的条件,完全以新的方式进行合成并得到了镥氮氢材料。" 我们的实验清楚地表明,从环境压力到 6.3GPa,温度低至 10K(约 -263 摄氏度),镥氮氢材料 LuH2 ± xNy 中不存在超导性。"
由于 Dias 团队的另一篇关于室温超导的论文曾在 2020 年被《自然》撤稿,理由是研究人员在数据处理方面存在违规行为,这削弱了编辑们对类似研究结果的信心。
近年来,全球之所以对室温超导材料关注如此密切,正是因为这项技术一旦得到突破,将有可能彻底改变科学和技术的方方面面。室温超导体最显著的优点之一是其提供了前所未有的能源利用效率。通常来讲,超导体需要极低的环境才能实现,这使得它们的实际应用受到严格限制,这些应用主要集中在能源密集型领域。如果能在室温条件下实现超导性,输电和配电系统将因为几乎为零的电阻而不造成任何能量的损失。
每日经济新闻